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An experimental procedure is presented which allows the direct visual observation and 
measurement of crack extension in ceramic materials at high temperatures. The directly 
measured crack lengths, gained from displacement-controlled three-point bend tests, are 
compared to those calculated from the compliance. An energy approach is presented to 
calculate R-values from the load-displacement curves. These R-values for a pure alumina 
and an alumina containing a glassy phase, for which the load-displacement curves show 
non-linearity at high temperatures, are compared to K-values and J-values. The stress 
intensity approach, based on traction-free surfaces, gives unrealistic data for the non- 
linear behaving material owing to adhesive effects behind the actual crack front. The 
J-values, calculated by two methods developed for investigations with moving cracks, are 
identical to those from the energy approach. 

1. Introduction 
Ceramic materials are becoming increasingly 
important as high performance materials for 
engineering purposes. The successful application of 
ceramics, however, requires a knowledge of 
material characteristic crack extension properties 
which enable the designer to reasonably predict 
the material behaviour in service. Owing to their 
brittleness, ceramic materials seem best suited for 
linear elastic fracture mechanics measurements, 
the analytical developments coming through a 
continuum approach. At a linear elastic stage the 
LEFM-concept, therefore, yields reasonable 
material constants (Kic data, v - K  x relationship) 
and often results in good agreement between dif- 

ferent methods (e.g. DT test, bend test). Two main 
objections may be raised, however, in using the 
continuum linear elastic approach. First, the 
dangerous flaws in ceramic materials are as large 
as the microstructural components. From this it 
may be questioned whether continuum equations 
characterize their strength behaviour. Second, the 
stress-strain behaviour may become non-linear 
and applying linear elastic fracture mechanics 
could be problematic. 

Observations suggest that the appearance of 
non-linearity is neither accompanied by a plastic 
zone, well defined in front of a crack tip, nor by 
macroscopic blunting effects as is the case with 
metallic materials. Consequently, the cracked 
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surfaces behind the crack tip keep close together 
and are not traction free. It seems rational, there- 
fore, to consider friction effects and adhesive 
forces at the crack surfaces. 

"Plasticity" effects are mostly found at elevated 
temperatures. It should be mentioned, however, 
that even at room temperature, pronounced 
macroscopic non-linear stress-strain behaviour 
may be detected if coarse-grained materials with 
high internal stresses or high microcrack densities 
are slowly loaded. 

Most of the plasticity effects can be attributed 
to the phenomenon of slow crack growth 
accompanied by secondary crack formation. In 
addition, at high temperatures "plasticity" effects 
due to viscous second-phase reactions may 
influence the stress-strain behaviour. Moreover, 
the strength and deformation not only depends on 
temperature but heavily on loading rate. 

The susceptibility to secondary crack formation 
makes it difficult to define a reliable crack length. 
As for instance the stress intensity is defined only 
for a single well-defined crack, its applicability 
may be questioned if long parallel cracks develop. 

The difficulties in defining an equivalent crack 
length and the "plasticity" effects summarized as: 
secondary crack formation, friction effects, 
adhesive forces with viscous reactions, seem to be 
obstacles for any evaluation of reliable critical or 
subcritical crack extension parameters. 

Owing to the uncertainty in the definition of 
crack length together with friction and adhesive 
effects, the measured crack resistance values may 
depend not only on temperature and loading rate 
but also on the crack length itself, forming a so- 
called R-curve. 

2. Energy concept and crack resistance 
Referring to the "plasticity" effects, a J-integral 
formalism should be used to obtain relevant frac- 
ture parameters. This was done in a previous paper 
[1]. The methods established were quite analogous 
to those introduced with metallic materials [2, 3]. 
The single specimen compliance method (SSPCM) 
with partial and total unloading and the multiple 
specimen method (MSPM) both resulted in rising 
crack resistance curves, JR, at elevated tempera- 
tures (J as a function of the normalized crack 
length, a/W) if an alumina with a glassy phase was 
used. 

In the case of unloading this was attributed to 
crack closure due to viscous reactions and referring 

to the MSPM-method to subcritical crack extension 
as a function of crack length [1-3] .  Those effects 
bring about that the recommended J-integral 
methods and the philosophy behind them may 
become problematic. 

The J-value is defined for a stationary crack 
(excluding subcritical crack extension) where the 
non-linear stress-strain behaviour is traced back 
to a plastic zone in front of the crack and not to 
viscous, adhesive reactions eventually behind the 
actual crack front. 

To avoid crack closure effects due to unloading, 
a completely deflection-controlled load-displace- 
ment curve should be performed which guarantees 
a stationary crack growth. The definition, calcu- 
lation and measurement of crack length is then 
decisive. 

Crack lengths may be calculated by the change 
in compliance, which includes both, subcritical 
crack elongation and viscous plasticity reactions. 
To separate the effects, direct visual observation 
and measurement of the crack length during the 
continuous loading process should be performed. 
The presumption is that the direct observation 
detects the separation of cracked surfaces but 
one cannot decide whether the cracked surfaces 
immediately behind the crack front are traction 
free or not. 

In the following sections an analytical back- 
ground is presented to define a parameter R 
characterizing the crack resistance of a stationary 
moving crack. R is chosen instead of a J-concept 
interpretation to avoid discussions concerning the 
definition of the J-integral. 

Consider an elastic-plastic body (in this case a 
three-point bending specimen) containing a single 
plane crack of length a which has a traction free 
crack surface area A = aB (a = crack length, B = 
specimen thickness). The crack may be propagated 
by energy supply in a stable, slow way, so that the 
crack acceleration is small and the kinetic energy 
of the body is negligible. In general, the energy to 
propagate the crack from a to a + da consists of 
two contributions: 

1. the energy to create the new crack surfaces 
P; 

2. the energy dissipating in a certain volume 
around the crack front, Ud. 
The energy contribution, Ud, usually highly 
exceeds the energy necessary for creation of the 
surfaces, P. The crack resistance,R which designates 
the total energy investment to create a unit area 
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Figure l Energy evaluation method (schematic illustration). 

of crack surface will be defined as [4]: 

~ud a r  au  
R - ~ - ( 1 )  

aA aA aA 

For the linear-elastic case as analysed by Griffith 
[5] that means, when 

1. linear and time-independent relations exist 
between stress and strain at the crack front; 

2. the crack surfaces are traction free; 
3. using the remote stress, Oc, and the crack 

length, ac,  a unique stress intensity value, Kc, can 
be defined, which represents a material constant in 
case of critical fracture, the crack resistance R 
reduces to 

a u  aF  
R c -  OA 3A Gc' 

G is the Griffith energy release rate. 
In this case the relation holds: 

a u  K~ 
R c -  aA - Gc = ~ (2) 

( E ' =  Young' modulus, E '  = E  for plane stress, 
E ' = E ( 1 - - v  2) for plane strain. According to 
Equation 2, R, G-curves for the linear elastic case 
can be calculated 

1. by combining corresponding stress values and 
crack lengths with (K-concept): 

K c = oca6/2 Y(a/W) (3) 

(Oc = remote stress in case of crack propagation, 
Y(a/W) = geometrical correction function) 

2. from measured or calculated changes in com- 
pliance by 

P~ dC 
G c - " : d a  da (4) 
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(Pc = load for stable crack extension, C = com- 
pliance). 

If the material behaves in a non-linear elastic 
or elastic plastic manner, that means, if an energy 
dissipating zone exists at the crack front, e.g. 
Irwin's plastic zone [6] and with the definition of 
an effective crack length, ae~ ~, and a non-linear 
energy release rate G*, Equation 2 still holds: 

aU  aud  aP 2 Kceff  
Rc aA aA ~- aA c E '  

(5) 

Kef f is a K-value calculated from that effective 
crack length, aeff, thus Equation 3 can still be 
applied for calculation of R, G* curves. 

The great advantage of an energy consideration 
is that R-values can be calculated independently of 
material behaviour by Equation 5, even when the 
actual crack length and the energy dissipating pro- 
cesses going on at the crack front or in the volume 
around the crack front are not well known. 

2.1.  Energy eva lua t ion  m e t h o d  
The total energy investment U(ai) to create crack 
surfaces for a crack of length a i in Equation 5 can 
be evaluated from load-displacement curves, 
gained in a displacement-controlled experiment 
(see Fig. 1): 

U(ai) = W [~i(af)] - Wel[ai, 8(ai)] (6) 

with 

W [~i(ai)] = r 8'(ai) P[$(a/)] d/5 
"0 

(P = load, 8 = displacement) 
For a crack growth, Aai, from ai-1 to ai, the 

energies A Ui are given by the areas included 
from the extrapolation lines back to the origin 
(compliance lines). The R-values according to 



Equation 5 are then found with the slope of a 
plot of normalized energies Ui /B  over crack 
lengths, ai. 

Sometimes at high temperatures ceramic 
materials do not show linear elastic but non-linear 
elastic or "quasiplastic" behaviour [1, 7, 8]. The 
question arises, whether the calculation method 
described above holds for the non-linear elastic 
(quasiplastic) behaviour of ceramics at high tem- 
peratures. 

In the special case if creep defomation can 
be excluded, no zero offset of the compliance lines 
occurs - the lines always can be extrapolated to 
the origin. Experimentally this fact cannot be 
realized, because in real unloading experiments 
extrusion of second phase [1] or bursting out of 
grains [9] causes a "crack closure effect" and thus 
a zero offset of unloading lines. 

It should, therefore, be emphasized that the 
described calculation method can be applied not 
only to ceramic materials with linear elastic but 
also to those with non-linear elastic (quasiplastic) 
behaviour. 

3. Experimental details 
3.1. Equipment 
All experiments were performed in air with a three- 
point bending device in a closed loop hydraulic 
testing machine (Fig. 2). The displacement could 
be directly measured and controlled at the lower 
surface of the specimen near the notch by a Si3Ni4 
pushrod (Fig. 3). The various displacement rates 
(0.02 pm rain -1 < 6 < 30pmmin  -1) could be pro- 
duced by a function generator. 

By some improvements to earlier constructions 
[1], the compliance of the system could be held 
very low at CM = 0.023 + 0 .003pmN -1. In all 

Figure 3 Displacement control unit. 

calculations this system compliance is accounted 
for. Vibrations of the hydraulic system could be 
almost completely removed. 

A microscope with photographing, filming or 
video equipment is attached in such a way that the 
crack tip could be observed on the specimen sur- 
face during the experiments (Fig. 4). 

The span of the bending device was 30 ram, the 
high temperatures were achieved by induction 
heating of a MoSi2 tube surrounding the specimen. 
The specimen dimensions were 35 mm x 7 m m x  
25 mm. 

3.2. Crack length evaluation 
3.2. 1. Compliance calculation 
Crack lengths are calculated from the extrapolated 
compliance lines by, at least for the linear elastic 
case, an experimentally well established formula 
[1, 7, 8, 10]: 

1u ai_ 1 C~ - -  C/_ 1 
ai = ai_l + (7) 2 q 

Figure 2 Loading equipment. Figure 4 Travelling microscope with video equipment. 
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T A B L E  I 

AlzO3-r A1203-s 

Purity (%) 99.7 + 0,3 MgO, SiO~ 97.0 + 3.0 glassy phase 
Grain size (gm) 2 11 
Density (kgm -3) 3.92 • 103 3.68 • l0  s 
Young's modulus (20 ~ C, GPa) 385 342 
KIC(20 ~ C) (MPam l/2) 3.8 + 0.4 4.2 + 0.5 

Experimentally the crack lengths are measured 
directly by watching the crack tip on the speci- 
men surface. At high temperatures this procedure 
requires rather complicated experimental equip- 
ment (see Section 3.1 .). 

3.2.2. Direct observation 
The expanding crack is pursued by a travelling 
microscope. The crack lengths can be measured 
directly by a micrometer or on photographs. 

Before the maximum load is reached, photo- 
graphs from the crack tip are taken at a constant 
time spacing by means of a time switch (in the 
case of photographing 5 to 50 picturesmin -1 
depending on the loading rate, 6; in the case of 
filming, a picture is taken every second). This pro- 
cedure is carried on until the specimen is com- 
pletely broken. The time spacings are chosen so 
that a minimum of twenty photographs of the 
crack tip are available for every experiment. The 
photographs were put together to obtain an over- 
all view of the complete crack and to  fix and 
measure the actual crack lengths. The observation 
of the crack tip at the specimen surface involves 
the problem of crack front curvature over the 
specimen thickness. This problem was investigated 
separately [11, 12]. The maximum error in crack 
length measurement was estimated to be -+ 2% 
from the overall crack length (notch depth plus 
sharp crack length) and no remarkable crack 
curvature was found. This backs the opinion that 
no plastic zone in front of the crack exists as it 
was found in metallic materials in cases of plain 
stress and plain strain. 

4. Materials 
To show the problems arising at high temperatures, 
two different aluminas were investigated. Their 
properties are listed in Table I. 

A debased alumina containing 3 wt% glassy 
phase (AlzO3-s) was used which served as a model 
material for non-linear "plastic" reactions at tem- 
peratures higher than 800 ~ C. For comparison, 
measurements were performed with a commercially 
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pure alumina (A1203-r) which exhibits a linear 
stress-strain behaviour up to 1000 ~ C. 

5. Experiments 
5.1. Experiments referring to linear elastic 

behaviour 
The applicability of the energy evaluation method 
is demonstrated on the fine-grained pure alumina 
material (A1203-r in Table I). This material 
behaves in a completely linear-elastic manner up 
to high temperatures [1, 7]. 

Figs. 5a to c give the original load-displace- 
ment curves at 20, 900 and 1000~ (unbroken 
lines). As an example, the broken line in Fig. 5b 
shows this curve corrected for the system com- 
pliance, CM. 

The crack lengths, evaluated by compliance 
and direct observation (see Section 3.2), coincide 
for all three temperatures. In the range 10 < 6 
12/2m, a small scatter in directly measured crack 
lengths occurs (Fig. 5b). 

For comparison, both crack length evaluation 
methods where used to caluculate the R-curves 
from the load-displacement curve of Fig. 5b using 
Equation 4 (Fig. 6). The scatter in the directly 
measured crack length effects a scatter in R. Both 
crack length measurements result in a horizontal 
R-curve. In addition, if linear elastic behaviour 
exists, both methods give equal results. 

Again for the load-displacement curve of 
Fig. 5b, the R-curve calculated from the energy 
concept (Equation 2) is compared in Fig. 7 to the 
R-curve gained from the stress intensity concept 
(Equation 3). The Krvalues are calculated from 
load and corresponding crack lengths, the crack 
lengths for both curves being the calculated ones. 
The R-curves for both methods coincide and the 
values remain constant with increasing crack 
lengths such as in Fig. 6, as is expected for a linear- 
elastic material [13]. 

In conclusion it should be noticed that in the 
case of linear elastic behaviour 

1. the application of the energy and the stress 
intensity concept results in coinciding R-curves; 



0 

6O 

z 
~4o 
< 
o 

2C 

T I M E (min) 
1 2 3 4 5 

AI203-R 20~ %1w=0~51 J ~ 
6.61 

�9 MEASURED . ~  
0 
LU 
. J  

5.81 r 

+ 501 -r 
(J 
I-- 
o 
z 

- , , , , , , = , , , /.21 
3 6 9 12 15 

(a) DISPLACEMENT(pm) 

TIME (min) 
Q67 2.0 333 1,67 6.0 

At203-R 1000~c oo/W;o.59 1 "~ 
60 �9 M EASU-~D ~ 6.63~ 

ACALCULATED t ~ 

~4o 1s83~ 

20 15.03 + 

o 2 4 6 8 2o  23= 
(c) DISPLACEMENT(pm) 

2. the R-values are independent of crack length; 
3. for experimental reasons the calculated crack 

lengths may be preferred to the directly measured 
ones. 

80 

60 
ff- 
'E 
--~ 40 

L~ 

20 

Z~ 
A 

Z~ZX A 

0 I I | I 

0.6 0.68 0.76 0.84 0.92 1.0 

alW 
Figure 6 R-curves for the load-displacement curve of 
Fig. 5b, gained from calculated (unbroken line) and 
observed crack lengths (triangles). 
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Figure 5 (a) to (c) Load-displacement curves and crack 
lengths for pure alumina. 

5.2. Experiments referring to non-linear 
elastic (quasiplastic) behaviour 

Up to this point in the discussion the behaviour of 
the materials can be described either by the energy 
approach in connection with directly measured 
crack lengths, or with a stress intensity approach 
if an ae~f can be defined (Equation 5). 

Linear-elastic behaviour as described above is 
found for many ceramic materials and glasses at 
room temperature, for pure alumina materials up 
to high temperatures of ~-- 1000 ~ C [1, 7, 9]. The 
reasons for a deviation from linear-elastic behaviour 
with ceramic materials are different from those 
found with metals and alloys. Time-dependent 
creep deformation, which was found, for instance, 
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Figure 7 Comparison between the R-curves gained from 
Fig. 5b, by energy concept (unbroken line) and stress 
intensity concept (broken line) with calculated crack 
lengths. 
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in special SiSiC materials at high temperatures 
[14], may be excluded. 

According to recent investigations deviations 
from linear-elastic behaviour in ceramics are 
caused by the fact that the crack surfaces are 
found to be not traction free, e.g. for materials 
containing a second phase, although a linear elastic 
field in front of the crack still exists [ 1, 7 -9 ,  15, 
16]. If  the influence of the tractions can be 
accounted for - this could be done by a correction 
of crack length to aef f = ao + d (ao = visually 
measured crack length, d=per tu rba t ion  zone 
length) - the stress intensity concept could still 
be applied. 

For the case discussed here, d has to be sub- 
tracted and the fictive crack front is to be trans- 
ferred from the coninuum back behind the visually 
measured actual crack front. 

Two effects may be mainly responsible for 
forces acting between the crack surfaces behind 
the crack front: 

1. according to direct observations using coarse- 
grained alumina materials [17], energy dissipative 
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Figure 8 (a)  to  (c)  L o a d - d i s p l a c e m e n t  c u r v e s  a n d  c r a c k  

l e n g t h s  f o r  a l u m i n a  c o n t a i n i n g  3 %  g l a s s y  p h a s e .  

mechanisms caused by friction and microcracking 
are acting behind the crack front. The R-curves for 
these materials show a crack length dependence 
(rising R with crack length) even at room tempera- 
ture. This behaviour is temperature independent 
[9, 11, 17]; 

2. in ceramics containing second phase, for 
which these phases become viscous at high tempera- 
tures, the crack sides adhere together and additional 
energy investment is to be bought up for crack 
opening [1,7]. 

In both cases, "plastic zones" or "processing 
zones" in a classical sense cannot be defined, 
because the energy dissipation processes are 
treated behind the crack front rather than in front 
of the crack. Nevertheless, although the crack 
front is in a linear elastic stage, the macroscopic 
behaviour of these materials seems best described 
by the energy concept in connection with directly 
measured crack lengths, as the expression for the 
stress intensity is actually not known. 

Figs. 8a to c show the load-displacement 
curves at 20, 900 and 1000 ~ C for alumina material 
containing 3% glassy phase, (A1203-s in Table I) at 
a displacement rate of 3/am min -1. In comparison 
to Figs. 5a to c (curves for the linear-elastic 
behaving material), the curves show no sharp load 
maximum. For the further considerations, Fig. 8a 
is an exception, because at 20~ the material 
A1203-s behaves in a linear-elastic manner like the 
A1203-r material in Fig. 5a. The curves in Figs. 8b 
and c include a larger area than those in Figs. 5b 
and c. This larger area results from energy dissi- 
pating processes during crack extension. 
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Figure 9 R-curves for the load-displacement curve of 
Fig. 8c: unbroken line, energy concept; squares, stress 
intensity concept, linear elastic case; triangles, stress 
intensity concept, effective crack length, aef  f. 

The two crack-length evaluation methods result 
in different crack lengths. For a certain displace- 
ment the calculation from compliance "sees" a 
shorter crack than the direct measurement. This 
fact indicates that the crack surfaces may not be 
traction free (see Figs. 8b and c). 

As an example, using the load-displacement 
curve of Fig. 8c, with directly measured crack 
lengths, the R-curve is calculated from the energy 
values according to Equations 5 and 6 (Fig. 9). 
The unbroken line represents the R-curve. 

At small crack lengths, a value of 40 J m -2 is 
calculated which corresponds to the value for 
linear elastic behaviour (see Figs. 6 and 7). The 
crack starts at the first departure from the straight 
line in the displacement curve (see Fig. 8c). At 
the maximum load a crack length of ~ 0.5 mm has 
developed. 

Correspondingly, the R-data increase from 
40 J m -2 up to 90J  m -2 (Fig. 9) and then remain 
constant at that level. When the R-curve reaches 
its plateau, the adhesive zone behind the crack 
front has developed its full size and external load 
and tractions are in a type of dynamic equilibrium. 
Referring to the example of Fig. 9, the adhesive 
zone has grown to a length of 0.5 mm. This behav- 
iour is reproducible. For a/W > 0.8 disturbances of 
the ligament by the upper load bearing may occur 
[7, 181 . 

If  the stress intensity concept for linear-elastic 
behaviour (Equation 3), again with directly 
measured crack lengths, is applied, the R (G) values 
rise to levels that, at least for that special material, 
cannot be physically justified (square symbols in 

Fig. 9). If  an ae~ ~ (measured crack length minus 
length of adhesive zone) is used, one obtains 
R(G*) values on a level of the linear elastic case, 
independent of crack length (triangular symbols 
in Fig. 9). 

In this special case the crack is transferred back 
from the continuum to a disturbed zone - the 
energies necessary for building up the adhesive 
zone are not accounted for (the triangular symbols 
in Fig. 9 are on a lower level than the unbroken 
line). Thus the insert of effective crack lengths and 
corresponding loads results in K-values for a 
material without an adhesive zone (Fig. 9). Accord- 
ing to this difference in the energy levels evaluated 
by the energy approach in connection with directly 
measured crack lengths and alternatively with a 
stress intensity approach; it can be stated that the 
special non-linear elastic behaviour cannot be 
described by a calculated ae~. 

6. Comparison of the energy concept to 
other concepts of non-linear fracture 
mechanics used for metals 

The J-integral concept of elastic-plastic fracture 
mechanics as was developed for metals in the 
linear-elastic case leads to a formula corresponding 
to Equation 2 [19]: 

IRi = I C c l  = IJ [  (8)  

This concept can be extended to the elastic-plastic 
region up to the full plastic state, if no unloading 
occurs. A non-linear elastic deformation is assumed 
to be interchangeable with the elastic-plastic 
deformation [20]. 

Earlier investigations concerning the applica- 
bility of this concept to ceramic materials at high 
temperatures were performed for different J- 
evaluation methods [1-3].  The methods failed 
for a ceramic material containing a glassy phase, 
because unloading procedures were necessary for 
crack length evaluation, which activated the 
adhesive zones behind the crack front ("crack 
closure effect") and resulted in rising JR-curves [1]. 
In the present case, the theoretical presumptions 
for J-calculation again do not seem to be fulfilled 
because: 

1. the measurements are performed with a 
moving crack where relaxation processes at the 
crack tip may occur; 

2. the plastic zone is situated behind the crack 
front; 

3. time dependency cannot be excluded. 
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Figure 10 J-evaluation method of Garwood (schematic 
illustration). 

Nevertheless the JR-calculation procedure pro- 
posed by Garwood et al. [21] for bend specimens 
was applied to the material A1203-s: 

BW - A  i 2U4 
Ji = Ji-x + ( 9 )  

BW - -Ai_  1 BW - -Ai_  1 

The advantage of the calculation of J by this 
iterative formula is that a determination of the 
slope OU/OA in Equation 2 can be avoided. The 
area U4 can be seen from Fig. 10. 

For the realistic experimental case Equation 2 
can be expressed (see Fig. 10) as : 

0U U3 
R - - ( l O )  

0A A1 --A0 

For small crack surface increments, AA, there 
holds [21]: 

J1 + Jo U3 

2 A1 --Ao 

100 

80 
ff- 

'E 60 

40 Qz 

20 

(11) 

If the simple formula for J, though applicable only 
for deep cracked bend specimens, is used [22]: 

2U 
J - B W - - A  (12) 

U1 and U2 are expressed by this formula: 

J o ( B W - - A o )  J a ( B W - - A a )  
U1 = ; U2 = 

2 2 

(13) 

and U1 and Us from Equation 13 and (-/3 from 
Equation 11 are substituted in the sum given in 
Fig. 10: 

U1 + U4 = Us + U3 (14) 

one obtains Equation 9. 
For these considerations it is presumed that the 

value of J is not affected by the way in which Q is 
reached in Fig. 10. This seems plausible for plastic 
deformation exceeding the elastic one in f ron t  of 
the crack. 

For the present ceramic material A1203-s, 
referring to the reasons mentioned above, the 
application of Equation 9 seems dubious. In spite 
of these doubts, a comparison of the calculation 
by Garwood's formula with the energy concept 
used here, in Figs. 1 la and b shows convincing 
agreement. According to further investigations, 
Garwood's formula presents a useful numerical 
method for the evaluation of R-curves with 
ceramic materials [23, 24]. 

The JR-Calculation procedure given by Garwood 
is based merely on geometrical considerations. A 
more general analytical concept for JR-calculation 
from a single load-displacement curve with a 
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Figure 11 Comparison between the J-evaluation methods of Garwood (triangles), Ernst (circles) and the energy concept 
(unbroken line), (a) for pure alumina at 900 ~ C, gained from calculated crack lengths of Fig. 5b, (b) for alumina con- 
taining 3% glassy phase at 900 ~ C, gained from observed crack lengths of Fig. 8b. 
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moving crack is given by Ernst et al. [25]: 

(a5) 

Ai-1, i represents the same area U4 of Fig. 10 for 
the ith step, normalized for thickness B. 

With b i_  1 = W - -  ai_ 1 and the factors ~ = 2 and 
3' = 1 for three-point bending specimens [25] one 
obtains the equation: 

B W - - A  i + 2U4 . B W - - A i  

Ji = Ji-1 B W _ A i _  1 B W _ A i _  1 B W _ A i _ I  

(16) 

Obviously Equation 15 for three-point bending 
specimens is identical to Garwood's formula, 
Equation 9, besides a factor ~/' = B W - - A i / ( B W - -  

A i _ l ) .  If the measuring points are chosen close 
together, this 71' differs only slightly from unity 
(0.95 < ~/' < 1) and shows nearly no dependency 
on normalized crack length a/W. 

In Figs. 1 la and b this fact is demonstrated, for 
the values calculated by Ernst's formula are some- 
what smaller than those calculated by Garwood's. 

In summarizing the results above it should be 
mentioned that: 

1. the energy concept and the J-evaluation 
methods of Garwood and Ernst give comparable 
results (see Figs. 1 la and b) for ceramic materials 
containing a second phase at high temperatures in 
bending experiments; 

2. the J-evaluation methods have the advantage 
of being easily calculable, because they are based 
on iterative addition of areas, no differentiation 
is necessary as it is the case with the energy con- 
cept; 

3. the results by the J-evaluation methods cannot 
be interpreted according to the definition of the 
J-integral, because essential presumptions for the 
J-integral calculation are violated. 

7. Conclusions 
An apparatus has been developed which allows the 
direct visual observation of crack extension in 
ceramic materials at elevated temperatures. The 
specimens were fractured in a completely displace- 
ment-controlled three-point bend test. 

The directly measured crack lengths were then 
compared with those calculated from compliance. 
From the area under the load-displacement curves 
and the crack lengths (directly measured and corn- 

pliance calculated), a crack resistance parameter, 
R, was evaluated and plotted as a function of 
normalized crack lengths. 

An energy approach R was chosen rather than 
a stress intensity factor to account for non-linear 
"plasticity" effects at higher temperatures. The 
notation J-integral was avoided as the experiments 
were performed with a moving crack where a 
stress relaxation process takes place at the crack 
tip. 

In the case of linear elastic behaviour at room 
temperature and for commercially pure alumina 
at 900 and 1000 ~ C, flat R-curves were measured. 
The R-data evaluated from a compliance calcu- 
lation and the directly measured crack lengths are 
identical. In these cases the energy approach 
proves to be equivalent to a stress intensity con- 
cept which is based on traction free surfaces. 

At elevated temperatures and pronounced 
plasticity reactions (alumina containing a glassy 
phase), the two different crack length estimations 
give values which are no longer identical. The R- 
data with different evaluation methods are there- 
fore also different. 

The R-curve, calculated by the energy approach 
using directly measured crack lengths, rises to a 
certain level at small crack lengths, and then 
remains flat. This initial increase in R is attributed 
to an adhesive zone of constant size and length 
developed behind the actual crack tip. A "plastic" 
zone ahead of the crack tip is excluded and stress 
and strains in front of the crack prove to be linear 
elastic. 

It is important to note that the crack surfaces 
are now no longer traction free, as is the case with 
a Griffith crack with no "plasticity" reactions. 

The traction free stress intensity approach in 
this case is, therefore, no longer valid and gives 
unrealistic data which increases steeply with 
increasing crack length (rising crack resistivity 
curve). Nevertheless, as the field in front of the 
crack tip may be described by linear elastic 
equations, an effective stress intensity, Ke~f, may 
be formulated whose definition is not yet known. 
tn the simplest case, Kef ~ may be formulated by 
introducing an effective crack length, aef f. 

The comparison of R-data evaluated by the 
energy approach with J-integral expressions 
developed for metals gives nearly identical values. 
These J-integral tests for metals mentioned were 
also performed using a controlled load-displace- 
ment device with a stationary moving crack. 
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